Wednesday, March 13, 2019
Basic Algebraic Properties of Real Numbers
Basic Algebraic Properties of Real Numbers The verse used to measure material-world quantities such as length, area, volume, speed, electrical charges, probability of rain, board temperature, gross national harvestings, growth rates, and so forth, are called echt tallys pool. They admit such number as , , , , , , , and . The basic algebraic properties of the real numbers racket can be expressed in terms of the two primitive operations of addition and generation. Basic Algebraic Properties Let and denotes real numbers. (1) The independent Properties (a) (b)The commutative properties says that the order in which we either add or multiplication real number doesnt matter. (2) The Associative Properties (a) (b) The associative properties tells us that the itinerary real numbers are grouped when they are either added or multiplied doesnt matter. Because of the associative properties, expressions such as and makes sense without parentheses. (3) The allocable Properties (a) (b ) The distributive properties can be used to expand a product into a sum, such as or the other way around, to rescript a sum as product (4) The identity operator Properties (a) (b)We call the running(a) identity and the multiplicative identity for the real numbers. (5) The Inverse Properties (a) For each real number , there is real number , called the additive inverse of , such that (b) For each real number , there is a real number , called the multiplicative inverse of , such that Although the additive inverse of , namely , is usually called the negative of , you must be careful because isnt necessarily a negative number. For instance, if , accordingly . Notice that the multiplicative inverse is assumed to follow if . The real number is also called the reciprocal of and is often written as .Example State one basic algebraic property of the real numbers to justify each statement (a) (b) (c) (d) (e) (f) (g) If , then Solution (a) Commutative place for addition (b) Associative Property for addition (c) Commutative Property for multiplication (d) Distributive Property (e) Additive Inverse Property (f) Multiplicative Identity Property (g) Multiplicative Inverse Property Many of the important properties of the real numbers can be derived as results of the basic properties, although we shall not do so here. Among the more important derived properties are the following. (6) The Cancellation Properties a) If then, (b) If and , then (7) The Zero-Factor Properties (a) (b) If , then or (or both) (8) Properties of Negation (a) (b) (c) (d) Subtraction and Division Let and be real numbers, (a) The difference is define by (b) The quotient or ratio or is defined only if . If , then by definition It may be noted that Division by zero is not allowed. When is written in the form , it is called a part with numerator and denominator . Although the denominator cant be zero, theres nothing scathe with having a zero in the numerator. In fact, if , (9) The Negative of a div ide If , then
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment